Tracy Kinjerski and Steven Chamow, Ph.D.

CDMO Selection for Bispecific Antibody Development: A Case Study Matching Capabilities to Need

Chamow & Associates, Inc. San Mateo, CA USA

Overview

• The Challenge

- Client company/project
- Target product profile
- · How to use a consultant in this process
- The Match
 - Considerations for candidate CDMOs
- Scope of Work
 - Development
 - GMP production
 - Timing of pre-IND meeting, IND
- Summary

Pre-reads

- 1. Judy Meyers, How to Find the Right CDMO Partner in Pharma, *Pharma Manufacturing*, Oct, 2019
- 2. Stephen Closs, Quality by Design: Working With Your Contract Manufacturer, *Chemistry Today* **32**, 10-13 (2014)
- 3. David Wilkerson, Outsourcing in Pharma and Biotech: Shifting to Contract Manufacturing and Development, *Zymewire* blog, 4 Mar 2020

The Challenge

The Client

- Small, venture-funded Bay Area biotechnology company
- Internal capabilities
 - POC research laboratory
 - No CMC development infrastructure
- Monoclonal antibody discovery platform
- Oncology focus

The Project

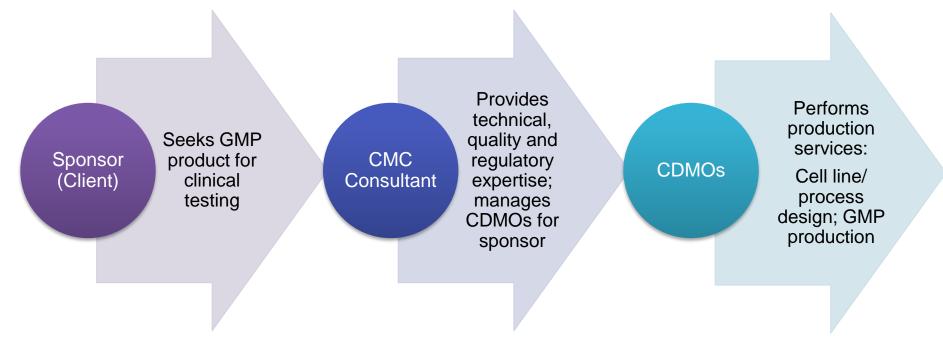
- Client company sought to develop pre-clinical mAb
 - Product
 - Humanized IgG1, not a bispecific
 - Hired external consulting group to execute CMC
 - Identify, evaluate, select and manage CDMO
 - Develop pre-IND strategy
 - Write CMC module of IND
 - Starting point
 - In silico amino acid sequence
 - Target product profile

Target Product Profile (TPP)

- "Needs checklist"
- Defines product characteristics
 - Product description
 - Indications and usage
 - Dosage and administration
 - Dosage forms and strengths
 - How supplied and handling
- Provided client with a roadmap to guide product development
 - Anticipated dose and clinical indications \rightarrow amount needed for clinical studies \rightarrow scale of production
 - Route of administration \rightarrow type of formulation

Preclinical TPP

- Clinical indication oncology Scale of production – 1000 or 2000 L
- Route of administration infusion 10 mg/mL liquid solution
 2-8 deg C storage


Characteristic	Detail				
Product Information					
Product name					
Molecular description	Humanized IgG1/k				
Biological activity	-				
Proposed mechanism of					
action					
Structural requirements					
DS Stability	24 mo -20 deg C				
Dosage Form	Buffered liquid solution				
DP Stability	36 mo 2-8 deg C				
Route of Administration	Intravenous				
Dosage Strength	10 mg/kg				
Pharmacokinetics					
Container and Closure	Glass vial				
System					
Production DS					
CDMO					
Cell line	CHO				
Target productivity at	3 g/L				
harvest					
Production scale (L)	2000L				
Estimated overall yield	80%				
(%)					
Batch size (kg)	4.8 kg				
Production DP					
CDMO					
Estimated yield (%)					
Batch size (# vials)					
Forecast (projected					
demand for Ph3 clinical					
trials, launch and first 5					
years on market)					
Labeling and Clinical Packaging					
Vendor					

The Match

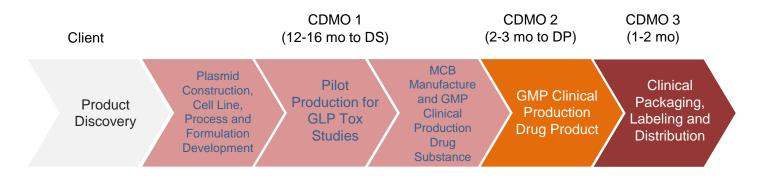
Use of CMC Consultants to Select and Manage CDMOs

We Evaluated CDMOs with Different Capabilities and Expertise

- Expertise varies
 - Monoclonal antibodies
 - Bispecifics
 - Enzymes
 - Cytokines
 - Growth factors
 - Fusion proteins (Fc, albumin)
 - ADCs
- Capabilities vary (e.g., one-stop shop or not)

Factors in Matching Client to CDMO

- Phase of development
 - Phase 1/IND vs. Phase 3/commercial
- Priorities
 - Quality
 - Cost
 - Time
 - Considered that cost and time are trade-offs
- Cell line
 - Productivity
 - Terms of access
 - Proprietary vs. non-proprietary
 - Wanted a CDMO with proprietary technology
- Cell line development experience and success
 - Not all CDMOs are equally good at making cell lines (stability, productivity, etc..)


Factors (cont'd.)

- One-stop shop or different CDMOs
- Process development
- Formulation development
 - This formulation was straightforward
- Analytical methods/Stability
- MCB—production/characterization
- cGMP
 - DS
 - DP
- Other considerations
 - Capacity for manufacture
 - Scale up and scale of manufacture

Project Stages and Timeline

Overall duration from delivery of amino acid sequence to clinical trial material: 15-21 month

Scope of Work

The Starting Point... Synthesizing cDNA from an amino acid sequence

mAb y1 Heavy Chain

Amino Acid Sequence

MAVLGLLFCLVTFPSCVLSQVQLKESGPGLVAPSQSLSITCTVSGFSLTDYGVRWIRQPPGKGLEWLGVIWGGGSTYYNSALKSRLSISKDNSKSQVFLKMNSLQTDDTAMYYCAKEKRR GYYYAMDYWGQGTSVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKAEP KSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTIS KAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKTS

cDNA Sequence

...To the Goal

Producing bulk drug substance and filled and labelled drug product

Scope of Work

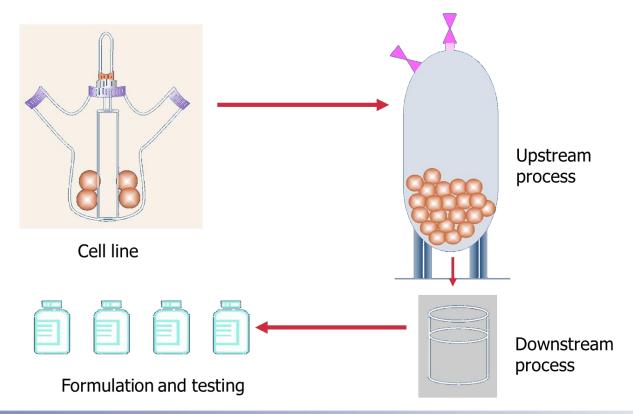
Development

- Cell Line
 - cDNA synthesis and plasmid construction
 - Cell line
 - RCB
 - MCB
- Process
 - Upstream
 - Downstream
 - Formulation
- Analytical
 - Compendial
 - Product-specific
 - Platform methods
 - Potency

Scope of Work (cont'd.)

Scale Up and Clinical Production

- Tox production
 - Reference material
 - Preliminary DP stability
- Characterization of reference material
- GMP production of DS
 - Viral clearance study
 - ICH Stability
- GMP production of DP
 - ICH Stability
- Clinical labeling, packaging and distribution



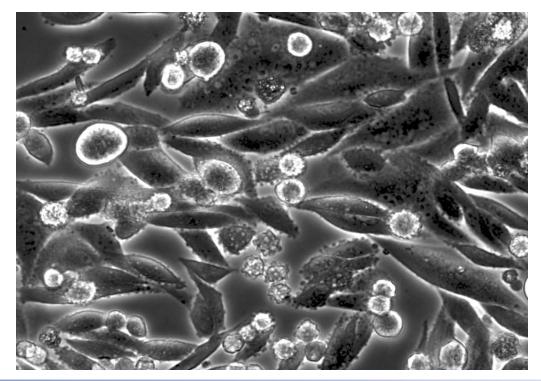
Cell line and Process Development

Elements of the Process

First Consideration: Cell Line/Expression System

Type of cell line	Expected productivity	Timeline*	Cell line stability	Cost components		
				Fee for service	Milestone payments	Royalty
Proprietary (requires license)	3-7 g/L, may require proprietary media	3-6 mo aa sequence to RCB	60-generation confirmation may not be critical path task	Yes	Yes	Few
Non-proprietary (public domain)	1-3 g/L, generally with commercial media	6-9 mo, aa sequence to RCB	60-generation confirmation of stability is critical path task	Yes	No	No

*Includes 1 mo for DNA codon optimization, synthesis + 1 mo for plasmid construction


Special Considerations for Bispecifics

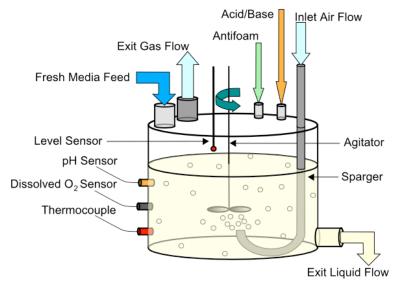
- Vector design
 - Single vs. multiple plasmid system
 - Assembly of the oligomer may vary with differential expression of monomer chains
 - Chain ratio may need to be optimized
 - Multiple plasmids provide greatest flexibility
- Structure and stability
 - Implications for use of a platform process
 - Stability at extremes of pH
 - Acid stability required for capture on Protein A, low pH hold for virus inactivation
 - Purification complexities
 - Product variants as impurities
 - Removal of variants will define final polishing chromatography

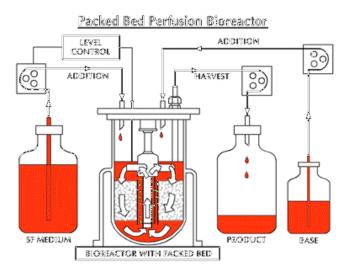
We went with Chinese Hamster Ovary Cells/Proprietary Expression System

Maximizing Productivity of Cell Culture Process

• Titer (mg/L) is determined by accumulated cell mass x cell specific productivity

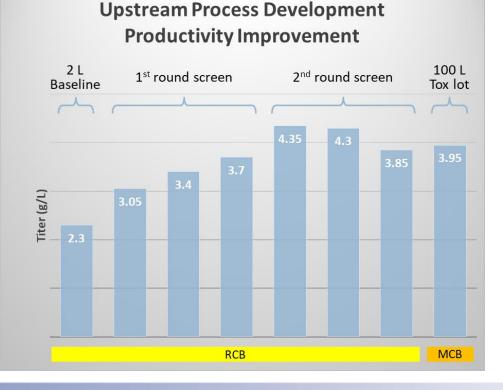
Titer = qp•∫xdt


Where qp = cell specific productivity Jxdt = cell mass


- A good process...
 - Starts with a highly productive cell line
 - And a cell culture process that produces high accumulated cell mass
 - Time in production phase with high cell viability
 - Timing and composition of feeds
 - Provide just-in-time nutrients and minimize waste products
 - Rate of agitation, oxygenation (sparging)

Cell Culture Process Design

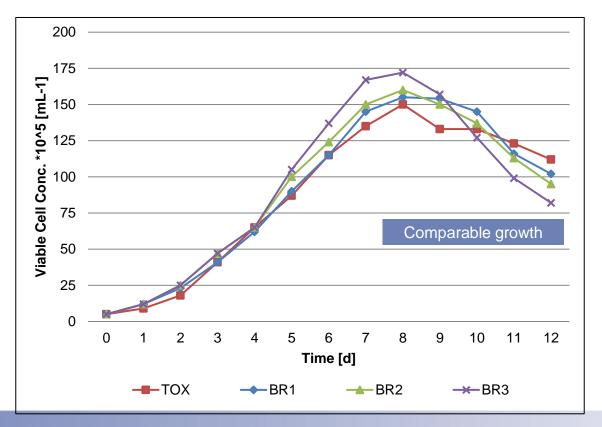
- Fed-batch
- Perfusion



Process Development Runs—Product Titer

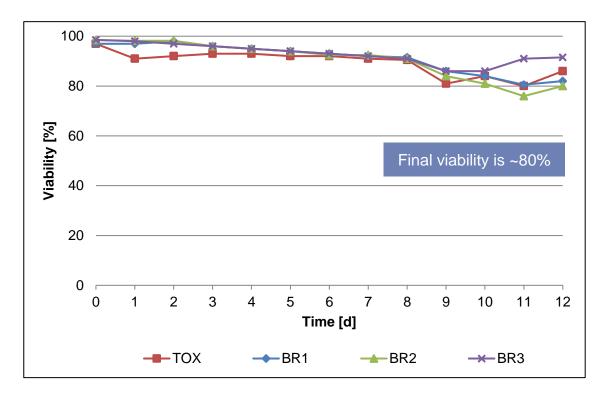
- 2L confirmation batches (3)
- 100L pilot batch (tox)

GMP Production

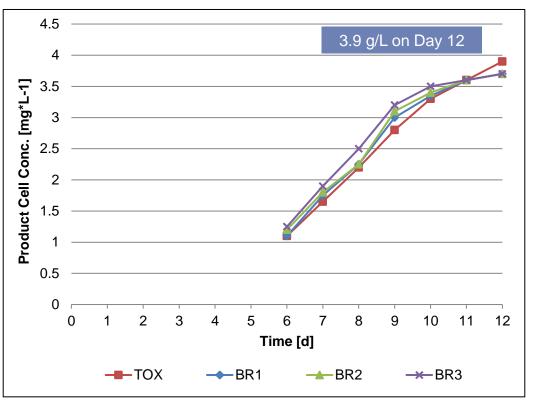


Summarizing the Scale Up

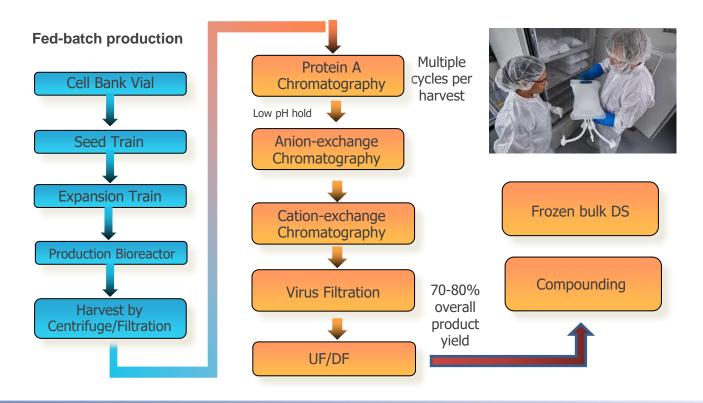
- Confirmation runs at 2 L bench scale
 - Performed with RCB
 - Confirmed performance of complete process
- Tox production at 100 L pilot scale
 - Performed with MCB
 - Pilot scale process reflects GMP process
 - Generates reference material
 - Preliminary DS, DP stability to support GMP stability
- GMP production at 2000 L
 - Performed with MCB
 - Samples taken for
 - Virus clearance study
 - DS, DP stability
 - Assay methods qualified



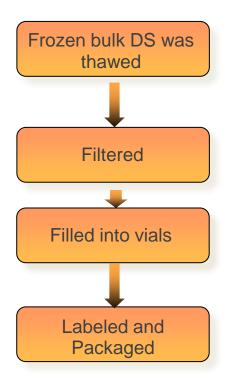
Confirmation Runs vs. Tox Batch – VCD



Confirmation Runs vs. Tox Batch – Viability



Confirmation Runs vs. Tox Batch – Titer



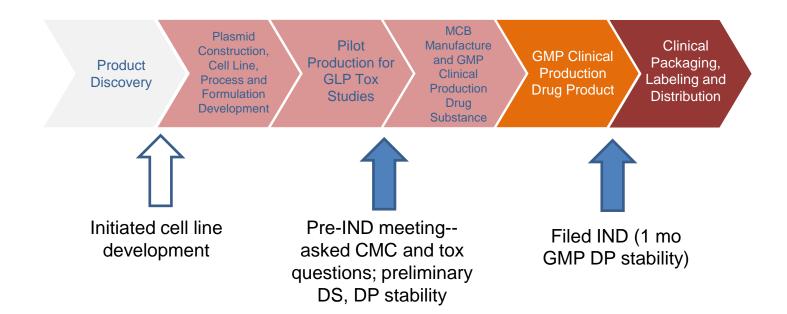
Summary of Process - mAb Bulk Drug Substance (DS)

Summary of Process - mAb Drug Product (DP)

Liquid DP filled into glass vials

Formulation Development and Drug Product Stability Studies

- Developed a stable formulation for storage of DS (-20°C)
- Developed a stable formulation for DP (2-8°C)
 - Evaluated
 - рН
 - Excipients
 - Formulation selected based on 3-month stability data
 - Goals
 - Liquid DP formulation (10 mg/mL) for intravenous administration
 - Stable DP product for >24 months at 2-8°C storage
 - DP is compatible with container/closure system and in-use compatibility (if DP to be diluted in IV bag)
- Key stability-indicating assays

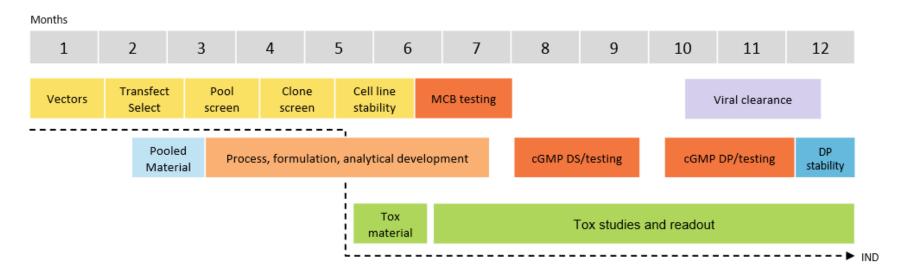


When Did We Time Interactions with FDA?

Summary

- If you are a scientist at a company wishing to develop a new biologic for clinical testing, plan on outsourcing manufacturing to a competent CDMO
- A CDMO can design a production process and can provide high quality product to meet regulatory requirements in sufficient quantity
- CDMO's have particular expertise, and capabilities should be evaluated carefully
- Plan on 1-2 years to develop a cell line and process and manufacture tox and clinical product
- Plan your interactions with FDA around the uniqueness of your product
- You may want to seek a CMC consultant to assist in this effort

Questions


Steven Chamow, PhD steve@chamowassociates.com (650) 274-3753 Tracy Kinjerski tracy@chamowassociates.com (714) 600-3904

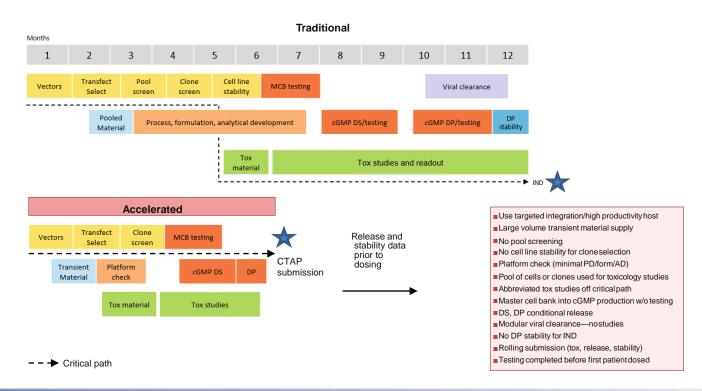
> CHAMOW & Associates Biopharmaceutical Product Development

www.chamowassociates.com

Current mAb development timeline

State-of-the-art technology applied to achieve 12 mo

--- Critical path to IND


Acceleration during COVID-19

How are programs moving faster than 12 mo?

- Adopt latest technological advances
 - Highly productive cell lines
 - Large bioreactors using single-use technology
 - Enables production of thousands of doses from single batch of >5 kg
- Focus on platform approach
 - Human IgG1 expressed in CHO cells
 - Safety and quality risks are low
 - >50 have been commercialized
 - Substantial platform knowledge, cGMP production experience and facilities
- Accept higher business risk
 - Consider caveats, but...with no increased risk to patients in first clinical trials (risk/benefit)
- Why not after a pandemic?

Faster CMC development timeline for pandemic Potential reduction from 12 mo to 6 mo

What's new here?

- Integration of innovative CMC methods with focus on speed
 - Targeted integration
 - Single round of cloning with imaging
 - Ambr15
 - Development supply run from large scale transient culture
 - Tox production from cell pool
 - No RCB--growth of production cell line concurrent with MCB manufacture
- Abbreviated tox studies
- Accepting higher business risk

