# Use of Design-of-Experiments to Develop a Highly Productive Process for Manufacture of a Chimeric mAb in GS-CHO Cells

Steven Chamow, Ph.D.
Head, Technical Services
Peregrine Pharmaceuticals/Avid Bioservices
Tustin, CA 92780



### Outline

- Initial mAb process
- Goals
  - Replacing soy hydrolysate
  - -Titer improvement
    - Composition
    - Dosage and timing
  - -Manipulation of glycan distribution
    - Galactose supplementation
- DOE design
  - -Factor screening
  - Level optimization



### Initial process

- Molecule: Chimeric IgG1 mAb
- •Cell line: GS-CHO expression system
  - -qP = 10 pg/cell-day
  - -IVC = 37E6 cell-day/mL
- Process mode: Fed-batch (glucose feed)
- •Cell culture medium: Basal containing 10 g/L soy hydrolysate
- •Process productivity: 0.5 g/L in 17 days

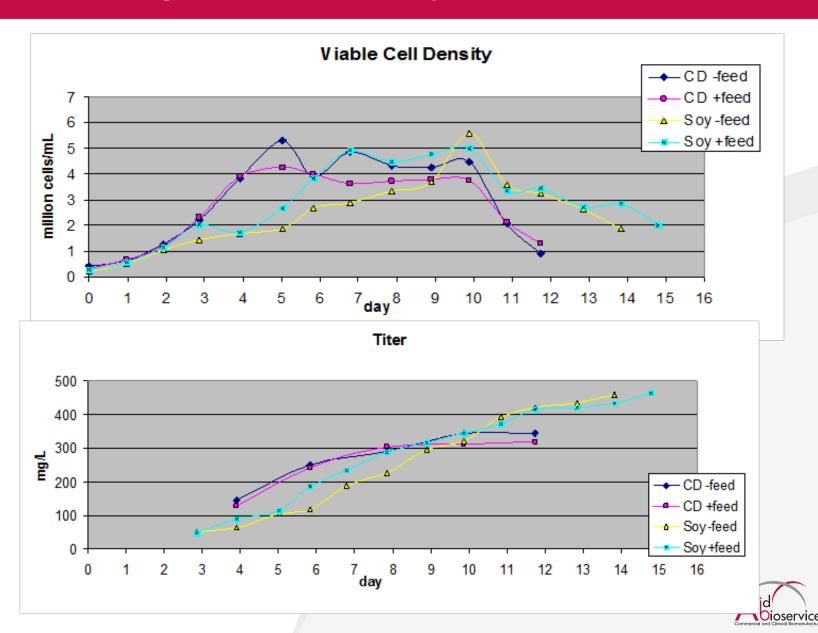


### Goals

- Improve process
  - 3-fold increase in productivity in a shorter process
    - 1.5 g/L in 14 days
  - No change in basal medium
  - Chemically defined supplements
- Maintain oligosaccharide profile
- Develop toolbox
  - -Screen medium components to identify factors
  - Use DOE to confirm effect on titer and quality
  - High throughput culture system for screening and optimization (Tubespin)



Replacing Soy Hydrolysate




### Chemically defined hydrolysate substitute

- ExCell CD Hydrolysate Fusion (SAFC)
  - Recently introduced chemically defined hydrolysate substitute
  - -Tested as soy replacement
- Results
  - Overall productivity somewhat lower
  - Promoted initial rapid growth
  - Boosted initial productivity

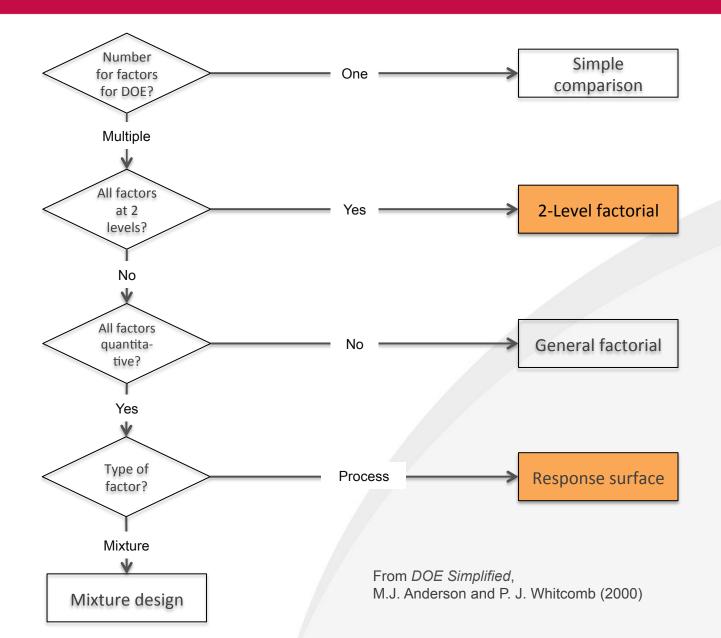


### Initial cell growth more rapid...



### ...With somewhat lower titer

|     | As initial supplement | As initial supplement and feed | Avg. Titer<br>mg/L |
|-----|-----------------------|--------------------------------|--------------------|
| Soy | +                     |                                | 460                |
|     |                       | +                              | 465                |
| CDH | +                     |                                | 343                |
|     |                       | +                              | 318                |


Basal medium supplemented with either soy hydrolysate (control) or CDH Fusion; average of duplicates



Design-of-Experiments Studies to Improve Titer



### Flowchart for applying DOE





### DOE approach

- 1. Identify variables, ranges, and type and response
- 2. If >5 variables, do a screening design (fractional factorial)
- 3. Identify 3-4 most important variables
- Run response surface methodology to optimize key variables
  - Response Surface Methodology (RSM)
    - »Central Composite
    - »Box-Behnken
- 5. Get a predictive model of the process for optimization
- 6. Do check-point trials to verify model and predicted results



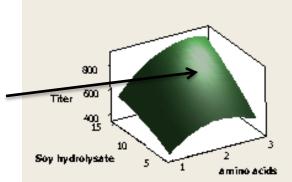
### Custom basal medium concentrates

- Vitamins and minerals
- Amino acids
- Lipids

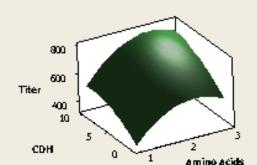


## Factorial design Screen of concentrates

| Supplementation with 2x concentrates | Vit. &<br>Min. | Amino<br>acids | Lipids | Titer<br>(mg/L) |
|--------------------------------------|----------------|----------------|--------|-----------------|
| A (control)                          | -              | ı              | -      | 556             |
| В                                    | +              | -              | -      | 601             |
| С                                    | -              | +              | -      | 1054            |
| D                                    | +              | +              | -      | 990             |
| E                                    | -              | ı              | +      | 574             |
| F                                    | +              | ı              | +      | 652             |
| G                                    | -              | +              | +      | 1043            |
| Н                                    | +              | +              | +      | 965             |
| Primary effect on titer (mg/L)       | -4.7           | 417            | 7.7    |                 |
| Average fold-increase                | 0.99           | 1.70           | 1.01   |                 |


Amino acid concentrate increased titer by 1.7x




### RSM analysis for titer optimization

### Amino acids are optimal at ~2.3x

- Soy and CDH increase titer, but only in the context of amino acids >1x
- Productivity limited to <1 g/L</li>







Surface Plots of Titer

Hold Values 2
amino acids 2
Soy hydrolysate 10
CDH 5

### First check-point trial: Composition

- Bioreactor verification run
  - −4 L, 15 day
  - -Basal medium
    - Supplemented with CDH Fusion, basal AA concentrate, and soy hydrolysate
    - Fed glucose
- Results
  - -qP = 14 pg/cell-day
  - -IVC = 69E6 cell-day/mL
  - -Titer = 1.05 g/L



Can We Increase Beyond 1 g/L Titer?



### Additional supplements and feeds screened

- Commercially available and custom
  - Supplements
  - Medium concentrates
  - Productivity enhancers
- Design: fractional factorials with center points for screening
- Results:
  - Confirmed previous factors with positive effects
  - Identified new factors with significant positive effects
    - Commercial medium concentrate
    - Amino acid supplement



### Second check-point trial: Composition

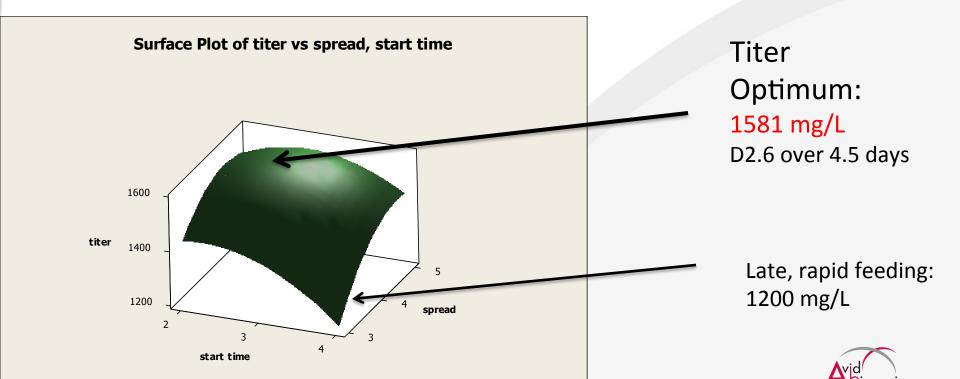
- Bioreactor verification run
  - -4 L, 14 day
  - -Basal medium
    - •Formulated without soy hydrolysate and supplemented with CDH Fusion, basal medium AA concentrate, and fed with a commercial medium concentrate, and a custom 2 amino acid mix
- Results
  - -qP = 21 pg/cell-day
  - -IVC = 65E6 cell-day/mL
  - -Titer = 1.35 g/L



# Summary of major factors Composition of supplements and feeds

- Major factors
  - -Commercial medium concentrate feed
  - -2-amino acid mix
  - -Basal medium AA concentrate
  - -CDH Fusion

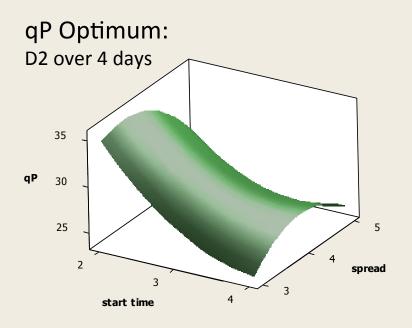



### Dosage and timing

- Experimental design
  - -20 mL TubeSpin Bioreactor format
  - -Chemically Defined Medium & Feed
    - Basal medium
      - -Custom without soy hydrolysate, supplemented with optimized feed mixture at 10% (v/v) initially
  - Dosage and timing of feed explored using RSM
    - •Start date: Feed initiated on Day 2, 3, or 4
    - •Duration: 20 mL of feed delivered over 2, 3, or 4 days



# Dosage and timing of feed RSM analysis: Titer


- Response Surface: Central Composite Design with duplicates and center point replication
- Model-predicted titer at optimum = 1581mg/L



# Dosage and timing of feed RSM analysis: qP and IVC

Note: Titer =  $qP \times IVC$ 

### Surface Plot of qP vs spread, start time



# Surface Plot of cIVC vs spread, start time IVC Optimum: D3.5 over 5 days civc 70 60 50 start time 4 spread



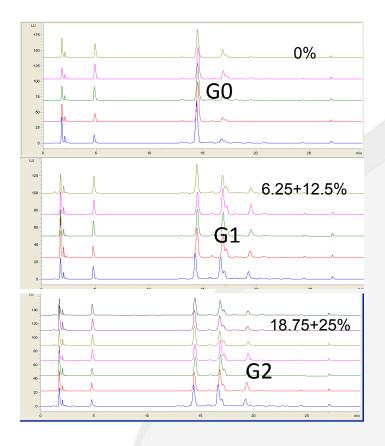
### Third check-point trial planned: Dosage and timing

- Bioreactor verification run in progress
  - −4 L, 14 day
  - -Basal medium
    - •Formulated without soy hydrolysate, supplemented at 10% (v/v) with optimized feed (CDH Fusion, medium concentrate feed, 2 amino acid custom mix, basal medium AA concentrate)
  - -Feed initiated on Day 3
  - –Feed duration 4 days
- Anticipated results (extrapolated from RSM analysis)
  - -qP = 28 pg/cell-day
  - -IVC = 70E6 cell-day/mL
  - -Titer = 1.5 g/L



Design-of-Experiments Studies to Manipulate Glycan Distribution




### Glycan control

- •Initial process generated mAb with G1=G0>G2
- •With increasing titer, glycan profile shifts G0>G1
- •Several factors reported to impact glycosylation were tested using a fractional factorial
  - -Gal, GlcNAc, mannose, uridine, Mn<sup>2+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, Fe<sup>3+</sup>, NH<sup>4+</sup>
- •Results showed glucose/galactose feed mixtures boosted the abundance of G1/G2 forms



### Galactose supplementation Effect on glycan distribution

• Glucose/galactose mixtures at 0, 6.25, 12.5, 18.75 and 25% galactose were used as feed. 0% galactose is plotted below as the control. 6.25+12.5% and 18.75+25% were separately combined and analyzed.



Glucose/galactose feed mixtures ↑
G1/G2 forms



# mAb upstream development Summary

- Used DOE to identify significant variables, developing an understanding of their effects and interactions
- Eliminated soy hydrolysate from basal medium
- More than doubled the titer to 1.35 g/L of mAb in a 4 L bioreactor in a 14-day process. Increased qP from 10 to 21 pg/cell-day. Nearly doubled IVC (from 37 to 65E6 cell-day/mL).
- Verification to achieve 1.5 g/L (3x goal) in progress
- Made significant progress toward offsetting the effect of a higher titer process on mAb glycans by incorporating a galactose feed
- Successfully implemented the TubeSpin culture system as a high throughput method for process development studies



### Acknowledgements

- Avid Manufacturing
  - Jonathan Liu, Roy Sevilla, Vince Nguyen, George Rodriquez, Simin Zaidi, Rich Richieri, Roy Sevilla, Tom Tomzynski
- Peregrine Process Sciences
  - Missag Parseghian, Van Nguyen, Illa Roy, Michael Brown, Connie Chang, Steve King







END

www.avidbio.com

